Module 3: Social and Affective behaviors
Learning goal:

1) Why is it important to study natural behavior of
animals to understand the brain?

2) What are the constraints of innate behaviors?

3) How are innate behaviors implemented, at
behavioral, circuit and molecular/genetic levels?



Mon 29 Oct
Introduction to limbic system by John O'Keefe

Tues 30 Oct
Circadian Rhythm by Cristina Mazuski, Neuromodulation and
oxytocin by Lennart Oettl

Fri 2 Nov
Innate social behaviors (incl. parental behavior) by Yoh Isogal

Mon 4 Nov
The amygdala by John O'Keefe

Tues 6 Nov
Defensive behavior by Tiago Branco

Fri 9 Nov
Human emotion by Quentin Huys



Experimental section

Instructors:
Mathew Edwards, Loukia Katsouri, Cristina Mazuski, Lennart Oettl,
Daniel Regester

Goal.
1) To develop skills to analyze rodent behaviors
2) To acquire basic skills in molecular biology

1:30 pm today - Introduction to module 3 experimental section
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Ethology - study of animal behavior in natural conditions




Evolutionary constraints on behaviors

Survival behaviors:
Reproductive behaviors
Defensive behaviors
Parental care

Dedicated circuits




Sign stimuli

Physical features
(e.g., color) Chemosignals “pheromones”

NG OH
Bombykol

(Tinbergen et al.) (Butenandt et al.)



More examples of sign stimuli
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Dynamic range of sign stimuli

Nikolaas Tinbergen
The Study of
INSTINCGT




Theories of social behaviors

How do we explain:
- Innate drive: seemingly "analog”
- Effects by internal states, such as hormones

- Organization of behaviors



| orenz’s model on motivation and drive

* T

Neuronal circuit
O implementation?
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Beach’s model on interaction between
sensory stimuli and internal states

RECEPTOR

2222

RECEPTOR

FIG. 2. Beach’s 1942 depiction of the relationships between multisensory inputs, the
"*Central Excitatory Mechanism,’’ and the motor circuits responsible for mating behavior
in male and female mammals. Reprinted from (13), by permission.



Tinbergen’s model on hierarchical
organization of social behaviors
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F1G. ¢97. Tentative representation of an instinctive ‘centre’ of an intermediate level.
Explanation in text.



Organization of behaviors

Behavioral hierarchy
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A modern spin

Circuit organization

level of
major instinct

ot 3rd level
: (consummatory act)

(Anderson, Biol Psychiatry 2012)



The legacy of ethology

- Neuroethology: studies of highly specialized
sensory/motor systems in animal kingdom:

- e.g., owl prey capture, stomatogastric
ganglion in crabs, bat echolocation —fill in
with your personal favorites —

- Sign stimuli: largely forgotten - being
criticized as too simplistic?



Where do we go from here?

[11

THE INTERNAL FACTORS RESPONSIBLE
rOR THE ‘SPONTANEITY OF BEHAVIOUR

x every study of the releasing value of sensory
I by the phenomenon of a varying threshold. The very same stimulus

that re.le'ases a maximal reaction at one time may have no effect at all
or may elicit a weak response at another time. This variation of thres-
hold could be due to either (1) a variation of the intensity of another
external st.imulus. not controlled in the experiment, or (2) a variation of
the intensity of internal factors, or (3) both. In this chapter we shall
consider the internal factors. The effect of these internal factors deter-
mines the ‘motivation’ of an animal, the activation of its instincts.

The methods of collecting facts bearing on this problem are of dif-
ferent kinds. First there are indirect methods. These are of three types:
(a) changes of intensity or frequency of a response are observed under
constant conditions; () the minimum intensity of the stimulus necessary
to release a response is determined at different times while the condi-
tions are kept constant in every other possible respect; (¢) the minimum
intensity of a stimulus required to inhibit a reaction is measured and its
variations in the course of time are observed (obstruction method).
The work done in these fields is rather fragmentary; nevertheless the
results are of considerable interest.

Secondly there is more direct evidence. This has been obt.ain.ed by
studying the effects of experimentally contrplled changes within the

___animal

While the indirect evidence has been collected by students of be-
haviour, the more direct method was used by neurophysn_ologls'ts and
endocrinologists. The contact between these two types of investigators
has not been what it should be; as a consequence too few attempts have <
been made to arrive at a coherent picture, although several tentative

steps have been taken.

stimuli one is faced

INDIRECT EVIDENCE

Variations of Intensity of Frequency of the Reaction under Constant
Conditions
This phenomenon has been observed by many workers. I—vl‘;;zter\:‘eal;;
very few careful and systematic studies have been made. <
(1919) summarized his extensive observations on the frequency

' : season in a
TProductive activities of pigeons in the COurse of the

Tinbergen, The Study of Instinct, 1967



How do we “understand” the behaviors of a

complex system?

A simple(-listic) case
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(Lazebnik, Cancer Cell 2002)

How would you try to understand how a radio works?



Analysis of a complex machinery requires
several levels of inquiries
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Genes and Social Behavior

2 Nov 2018

Yoh Isogai



Today’s agenda

- What are the components of neural
circuits underlying social behavior?

- Parts list of social behavior circuits

- Discussion - Top down vs bottom up
approaches



How do odors trigger innate behaviors?

¢O7I $\

Yoz T aels




Phases of social behaviors

Execution of
behavior

Behavioral
decision
“command
neurons”

Detection of

soclal cues

‘. C “fixed action
sign stimul

pattern”

Appetitive Decision Consummatory



Keep in mind: each social behavior consists of multiple components

Drosophila courtship behavior Parental behavior

orienting tapping singing

licking attempting copulation copulation

Figure 9-2 Principles of Neurobiology (© Garland Science 2016)
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Olfactory information drives social behaviors

Main olfactory
epithelium (MOE):
oA TRPC2 >1000 receptors

il i

Loss of sex discrimination,
aggression, innate fear

(Stowers et al. Science 2002, Leypold et al. PNAS
2002, Papes et al. Cell 2010)

Vomeronasal organ
(VNO): >300 receptors



The vomeronasal organ is critical for sex discrimination

WT .

Wrong sensory
Information results In
Inappropriate
behavior!

(Stowers et al. 2002; Leypold et al. 2002)




STUDIES OF MATERNAL RETRIEVING IN RATS. IIIL
SENSORY CUES INVOLVED IN THE LACTATING
FEMALE’S RESPONSE TO HER YOUNG}Y)

by=
FRANK A. BEACH and JULIAN JAYNES

(Department of Psychology, Yale University)

(With 3 Figs)
(Rec. 16-X1-1955)

INTRODUCTION

A central problem in the analysis of complex patterns of behavior is
identification of the evoking stimuli. This 1s especially important in con-
nection with those “species-specific” types of behavior which ‘are usually
termed “instinctive”. As LASHLEY has expressed it:

Social cues are multisensory

PER CENT
100

Stimulus Object Sum of Such Objects Number of Number of

TABLE 1

Per Cent of
Objects Retrieved

Presented in All Females Tested Tests
Tests Combined
Normal pup 177 18 33 08
Freshly killed up 54 17 54 05
Live pup covered
with vasoline 25 ) 13 64
Freshly killed pup half
covered with collodion 34 o) 17 53
Freshly killed pup
completely covered
with collodion 41 14 22 17
Dead pup preserved
in alcohol 22 8 10 17
Piece of raw beef heart 64 18 31 14
0 & . . . . "
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Fig. 2. Per cent of normal, freshly-killed, and refrigerated pups retrieved at the end
of successive time intervals,
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Fig. 3. Composite graph showing number of normal pups retrieved by females suffering
various types of peripheral desensitization.



- Smell

- Vocalization
- Shape

- Texture

- Color

- Temperature
- Motion

What is a pup?




How do we delineate neural circuits underlying
social behavior?

social cues 1 -> —p =
soclal cues 2 -> —
social cues 3 -> —P




Control of aggression and mating by VMH neurons
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Parental behavior




Regulation of parental behaviors

pro-parental
stimuli

pro-infanticidal
stimuli
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Hypothalamic nuclei for execution of survival behaviors can
be genetically defined
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F1G. 97. Tentative representation of an instinctive ‘centre’ of an intermediate level.
Explanation in text.

Tip of the iceberg - we have absolutely no idea what parts exists in the circuit!



What determines a “cell type”?

Anatomical Molecular Physiological Behavioral

“Cell adhesion/

' . 2 i 7 )
guidance molecules” Genes lon channels .



Top down vs bottom up

top-down - When Is reductionism useful?

animal behavior

- When is reductionism not effective?

circuits/systems

B
synapses/neurons T s
genes/proteins

bottom-up

Figure 10-7 Principles of Neurobiology (© Garland Science 2016)



Existential crisis of molecular neuroscience?

Did bottom up approaches yield meaningful understanding of the brain?

Highly recommended reading:

- Sudhof, Neuron 2017
- Sanes and Lichtman, Nature Neurosci 1999



Molecular taxonomy: classification of cells in the brain

Is the hype justified?

Why do we need a parts list?

How Is a parts list used to help us

understand the circuits underlying social

behavior?
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Let’s not forget that parts list is only the beginning!

I was once told by one of the leaders in the field
that the neurotransmitter that mediated a synaptic
connection was irrelevant, and the only thing that
mattered was the sign of the synapse, excitatory or
inhibitory. Although today’s anatomists must know
that neuromodulatory neurons can release their co-
transmitters at a distance from their targets, the
underlying assumption of today’s electron
microscope connectome projects 1s that the
conventional close-apposition synapses provide
most, 1if not all, of the information needed to
characterize the circuit, the same assumption that
was made 35 years ago by the small-circuit
physiologists.

(Marder, Neuron 2012)



Cell type classification by gene expression

Single cell RNA (scRIE\IA)-seq Multiplexed RNA fluorescence in

situ hybridization
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Fig. 5. Simultaneous measurements of 1001 RNA species in single cells by using MERFISH with a
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(Chen et al. Science 2015)

(Macosko et al. Cell 2015)



d Dissected areas

56 Glutamatergic and 61 GABAergic neuron types in visual cortex
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scRNA-seq vs multiplexed RNA FISH

MmRNA
Throughput reads
coverage

Major Major
advantage disadvantage

Expensive

s highly (Typically ~
e )\ SR Unbiased med-~high expressed casy to $10k per
(~50 k cells) perform .
genes experiment
~5000 cells)

low to med Preservation
Biased high (>100k) expressed of tissue
genes morphology

Multiplexed
FISH

Image analysis
not trivial



Sytl4 mRNA
BNSTmpm

BNSTmpm

Brs3 mRNA

MeApd

What’s the difference between male and
female brains?
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(Xu et al. Cell 2012)




Revealing cell types of social behavior circuits by
MERFISH (Multiplexed error-robust FISH)

Identification of
cells and RNAs
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(Moffitt, Bambah-Mukku et al. Science 2018)
>1 million cells profiled in spatially preserved tashion
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Challenges

7-d dark Oh,1h,4h V1 cortex
housing light stimulus dissociation

inDrops Analysis Oh
1 Th
| 4 h

- Expanded classes of cell types:
consider activity dependence

6 to 7 weeks old

b C d

e Expressed genes
Fos Npas4

* ok k . e Treatment, DE genes

----.O-t]..a. I..._Ul,......,......O.t].--- I..._1.,h....,. ok k c 02 £— — \ SDtén;:I:etLonandtreaten.t, = Where ShOUId We Settle fOr a meaninngI
150 - @ o il . g
- molecular definition of cell types?
Qzé 50 4 Er: | ¢ e E
| E
-3 S
—| - s i | o Lodh A - 0 ! s,
0 Puncta 0 0 Puncta - OhFos1h O,\Tpa:; Standard Optimized
e f

Gapdh - doobodd bt
PP POOPPPPT PP
Slc17a7 1l d gl |
Gadl ‘.&““
Olig1
Cldn5 VP PP
Cx3crl PP N
Aldoc
Vitn e &
® Excitatory neurons ® Microglia Mrcl ‘
® Interneurons Astrocytes
DX S V20DV RDE DY X9 b AN V& 3
Oligodendrocytes © Pericytes %+&+$§+§;&°@@;&1 /%: /é‘\:,\&/;v:‘\& /0 O\\% O\%O\\% \%O\% K7 \‘?o Q(/ (é\bo:\bo ®/®®@3\ ?\Q \doQ 0
® Endothelium, ® Macrophages oC AN N @7’
smooth muscle

(Hrvatin et al. Nature Neurosci 2018)



Future prospect - multi-level definition of cell types

Morphology
Multiplexed
RNA smFISH
A
= o
e —_— ¢ o
N =
® .:.'.
° o
Electrophysiology

Multiplexed
RNA smFISH

-
7

Behavior RE

Multiplexed
RNA smFISH

!"”
™ e
\T @ ~~~~ :o.o‘:°‘ s 3 O
e .‘\\~

(Lein et al. Science 2017)




Inter-individual variability of social behaviors

Prairie voles are monogamous, but there are cheaters...

Fig. 1. Male sexual fidelity predicted by patterns

Tl
of space use, social interaction, and VlaR. oo1.5 . §
(A and B) Intensity of male space use. The x and y 1ci_> — 5
axes are enclosure dimensions (20 m x 30 m); > S I
the height and color of the peaks indicate prob- g) 1% | ®
ability densities. A focal male is indicated as a L5
solid peak; nonfocal males are indicated as blue- Q % I
contoured peaks. Single males are not shown. o 15 .
Arrows indicate the regions of likely intrusion by ) ) - ndl An a‘yS I S Of reg U ‘ atO ry
the focal male. (C to F) EPF and IPF males differ 07C 11D .. 0171E 0.2 027 G baired o _
ir7 space use. (G) Rates of intru;ion and of mgle GE) % T % T 2 % reg |On Of th e g e nome
visitation are correlated. (H) Regions of a spatial- 2 = C %’ c . .
memory circuit (31) vary in receptors for vasopressin © o | 9O | o | 2
(red) or oxytocin (blue) (13, 19). Abbreviations e g § 3 § 1S M pOrtantl
are as follows: ERC, entorhinal cortex; Hipp, hip- :E 1 ny = £
pocampus; AThal, anterior thalamus. (I to K) 0" 0 - 0" 0 0 —
Autoradiograms for V1aR in the RSC. RSC-V1aR IPF EPF IPF EPF IPF EPF IPF EPF 0 Male visits ©-
abundance (in dissociations per minute per milli-
gram of tissue) predicts sexual fidelity and (L) in- ] RSC ot - LSk K ., 0.27 single o
trusion rate. All bars show mean £ SE. *P < 0.05, / N Al T 2 oo paired e
*P < 001, ***P < 0001 ERC i - ‘>£ ' . o
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(Phelps et al. Science 2015)



Summary

- Bottom up approach from molecular front is helpful but
has to be done in a meaningful context. Top-down and
bottom-up approaches need to be used in combination.

- Immense cellular diversity in the brain
- Unique set of markers
- The ways In which cells respond to action potential

- Currently, there isn’t a lot of functional studies linking cell
diversity and behavior



Module 3: Social and Affective behaviors

Learning goal.

1) Why is it important to study natural behavior of
animals to understand the brain?

2) What are the constraints of innate behaviors?

3) How are innate behaviors implemented, at
behavioral, circuit and molecular/genetic levels?



